Variable Depth Kdv Equations and Generalizations to More Nonlinear Regimes

نویسندگان

  • Samer Israwi
  • S. ISRAWI
چکیده

We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the CamassaHolm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when the bottom is flat. We generalize here this result with a new class of equations taking into account variable bottom topographies. Of course, many variable depth KdV equations existing in the literature are recovered as particular cases. Various regimes for the topography regimes are investigated and we prove consistency of these models, as well as a full justification for some of them. We also study the problem of wave breaking for our new variable depth and highly nonlinear generalizations of the KdV equations. Mathematics Subject Classification. 35B40, 76B15. Received January 14, 2009. Published online January 27, 2010.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Kudryashov method and the functional variable method for the complex KdV equation

In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.

متن کامل

A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations

In this paper we study numerically the KdV-top equation and compare it with the Boussinesq equations over uneven bottom. We use here a finite-difference scheme that conserves a discrete energy for the fully discrete scheme. We also compare this approach with the discontinuous Galerkin method. For the equations obtained in the case of stronger nonlinearities and related to the Camassa-Holm equat...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

A KdV-like advection-dispersion equation with some remarkable properties

We discuss a new non-linear PDE, ut + (2uxx/u)ux = uxxx , invariant under scaling of dependent variable and referred to here as SIdV. It is one of the simplest such translation and space-time reflection-symmetric first order advection-dispersion equations. This PDE (with dispersion coefficient unity) was discovered in a genetic programming search for equations sharing the KdV solitary wave solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009